Tektosyne User’s Guide

Overview of Library Features by Package

Christoph Nahr

christoph.nahr@kynosarges.org

Published 10 April 2019 on the Tektosyne home page
http://www.kynosarges.org/Tektosyne.html

mailto:christoph.nahr@kynosarges.org
http://www.kynosarges.org/Tektosyne.html

Abstract

This guide summarizes the contents of the Tektosyne Library for Java. The current versions
of this document and of the library itself are available at the Tektosyne home page. Please see
there for system requirements and other information.

This guide covers all Tektosyne packages and their public classes. The goal is to provide
a compact overview of the library’s functionality, while explaining some complex or unusual
features in greater detail. Please see the Javadoc class reference included with the library for a
complete documentation of all types.

Online Reading. This document contains a “Bookmarks” navigation tree. Click on any tree
node to jump to the corresponding section. Moreover, all phrases in blue color are clickable
hyperlinks that will take you to the section or address they describe.

Colophon. This document was written in EIEX using MiKTeX 2.9 with XeLaTeX, komA-
Script, and various other packages. See EIEX Typesetting with MiKTeX for details.

The uML diagrams were reverse-engineered from the compiled Java JAR files, using my
free Class Diagrammer application, and embedded as pDF files.

Body text is set in Minion 12 pt from Adobe’s Minion Pro collection, designed by Robert
Slimbach. Subtitles and diagram text are set in various sizes and weights of Myriad from Adobe’s
Myriad Pro collection, designed by Robert Slimbach and Carol Twombly.

Identifiers and code fragments outside of uML diagrams are set in Microsoft’s Consolas,
designed by Lucas de Groot. The font is compressed by 20% to take up less space.

Date Version | Library Description

2019-04-10 | 2.0.2 6.3.0 | Updated demo notes, GeoUtils, Subdivision
2017-04-08 | 2.0.1 6.0.1 | Added NaN note, updated PointDComparator
2016-12-14 | 2.0.0 6.0.0 | Revised for rewritten Java library

2012-06-09 | 1.2.0 5.6.3 | Changed typesetting to ETEX with MiKTeX
2012-05-30 | 1.1.1 5.6.3 | Added RectLocation

2012-03-31 | 1.1.0 5.6.1 | Changed typesetting to DITA With 0Xygen
2012-02-26 | 1.0.3 5.6.0 | Added VisualSource, ConcurrentVisualHost
2012-01-09 1.0.2 5.5.6 | Added AssemblyExtensions

2011-06-24 | 1.0.1 5.5.2 | Updated QuadTree<T>, Subdivision, IGraph2D<T>
2011-05-31 | 1.0.0 5.5.1 | Initial release, using p1TA With FrameMaker

http://www.kynosarges.org/Tektosyne.html
http://www.kynosarges.org/LaTeX.html
http://www.kynosarges.org/Diagrammer.html

Contents

Package Overview

1.1 DesignGoals
1.2 DesignHistory e
1.2.1 .NETOrigins
1.22 MovingtoJava o
Root Package
2.1 Mathematics
22 Collections e
Geometry Package
3.1 Geometric Primitiveso oo
3.2 BasicAlgorithms L
3.3 Linelntersection oo o
3.4 Point Comparison e
3.5 RegularPolygons L
3.6 VoronoiDiagrams 0
Graph Package
41 Graphsand Agents e
411 GraphStructure
41.2 World Coordinates
413 MovingAgents. L e
4.2 A*Pathfinding Algorithm L oL
42.1 Limited SearchRange
42.2 Minimal World Distance
4.2.3 Transient and Permanent Occupation
424 MovementStepCosts o oo
425 Relaxed MovementRange
43 Path Coverage Algorithm
44 FloodFill Algorithm o

13
14
17
18
20
21
23

Contents

4.5 Visibility Algorithm Lo 32
Subdivision Package 33
51 EdgeandFaceKeys 35
52 Half-EdgeCycles 35
53 VertexDistances e 36
54 VertexRegions e e 36
Benchmark Results 37
6.1 PointCollections 37
6.2 Geometric Algorithmso o o Lo oo 38
6.3 Multi-Line Intersection 39
6.4 Subdivision Algorithms Lo Lo 39
6.5 CommentsonJavavs NET 40

6.5.1 Caveats e e e e e e e e e 40

1.1

2.1
2.2

3.1
3.2
3.3
34
3.5
3.6
3.7

4.1

5.1

List of Figures

Package Overview e 7
Utility Classeso e 11
CollectionClasses i 12
Integer-Typed Primitives 15
Double-Typed Primitives 16
Basic Geometry Classes 17
Line Intersection Classes 19
Point Comparison Classeso i 21
Regular Polygon Classes 22
Voronoi Diagram Classes 24
Graph Classes 26
Subdivision Classes 34

CHAPTER 1

Package Overview

The Tektosyne Library ships in a single Java jar file. Its root package is org.kynosarges.tektosyne
and splits further into three subpackages. Figure 1.1 shows an overview.

The download archive also contains unit tests and a self-explanatory Gur application
with testing and demonstration dialogs, Tektosyne.Demo. This guide does not cover them, but
Chapter 6 presents benchmark results obtained with the demo application.

1.1 Design Goals

Tektosyne provides algorithms for computational geometry and graph-based pathfinding, along
with supporting mathematical algorithms and specialized collections. The library is designed
to be independent of any specific environment or gui framework, and accordingly only requires
the Java SE 8 Compact 1 profile or the module java.base on Java SE 9 and later.

I created Tektosyne for my own use in the implementation of computer strategy games
and simulations, as detailed in the historical notes below. However, this should not limit the
library’s usefulness for other applications such as mapping. All general algorithms are textbook
implementations with no built-in restrictions to any particular use case.

Not-a-Number. Tektosyne types and algorithms do not check floating-point arguments for
1EEE 754 NaN (Not-a-Number) values. Valid inputs should never produce them, but you can
expect “garbage in, garbage out” when supplying NaN inputs. Note that many System.Math
methods likewise silently return invalid results for invalid floating-point inputs.

1.2 Design History

The rest of this chapter tracks the convoluted history of the Tektosyne project. It’s not relevant
to understanding or using the library but you might find it amusing nonetheless.

https://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html

1. Package Overview

«package»
org.kynosarges.tektosyne

+ Fortran

+ MathUtils

+ NodeList<T>

+ NodelList:Node<T>
+ QuadTree<V>

+ QuadTree:Node<V>

«package»

org.kynosarges.tektosyne.geometry

«package»
org.kynosarges.tektosyne.graph

+ AStar<T>

+ Coverage<T>
+ FloodFill<T>

+ Graph<T>

+ GraphAgent<T>
+ GraphPath<T>
+ NodeArc

+ PathNode<T>
+ Visibility<T>

+ Angle

+ Compass

+ GeoUtils

LineD

Linel
Linelntersection
LineLocation
LineRelation
MultiLinelntersection
MultiLinePoint
MultiLinePoint::Line
PointD
PointDComparator
PointDComparatorX
PointDComparatorY
Pointl

PolygonGrid
PolygonGridShift
PolygonLocation
PolygonOrientation
RectD

Rectl

RectLocation
RegularPolygon

+ SizeD

+ Sizel

+ Voronoi

+ Voronoikdge

+ VoronoiResults

T e T o o S o S S e e S S S e

«package»
org.kynosarges.tektosyne.subdivision

+ AddEdgeResult

+ FindEdgeResult

+ PolygonGridMap

+ RemoveEdgeResult

+ Subdivision

+ SubdivisionEdge

+ SubdivisionElement

+ SubdivisionElementType
+ SubdivisionFace

+ SubdivisionFullMap<T, U, V>
+ SubdivisionIntersection
+ SubdivisionMap<T>

+ SubdivisionSearch

+ VoronoiMap

Figure 1.1: Package Overview

1. Package Overview

1.2.1 .NET Origins

Tektosyne originated in 2002 as a toolbox library for .NET that was literally called “Toolbox”
and had no design goals whatsoever. I just threw in any number of string utilities, Windows
Forms helpers, improved collections, Simple maPI methods, and whatever else I found lacking
in the early .NET base class library.

Additionally, though, there were already a number of mathematical, geometric, and
pathfinding classes required by my simultaneously developed Hexkit Strategy Game System for
.NET. Version 2.6 in 2004 renamed the library from Toolbox to the more distinctive Tektosyne.
Version 3 in 2005 dropped all hard-coded primitive collections due to the introduction of .NET
generics, and version 4 in 2008 dropped Windows Forms in favor of wpr. This was also the
first release to start separating geometric types from on-screen drawing.

From that point on new development focused on computational geometry and graph
algorithms, partly driven by the requirements of my new Myriarch Combat Simulator. Version
4.3 in 2010 and the following releases added Voronoi diagrams, point comparators, quadrant
trees, convex hulls, multi-line intersections, and more. Version 5 later in 2010 introduced the
current set of geometric primitives, and the next releases added planar subdivisions.

Version 5.5 in 2011 split these core types from unrelated Windows toolbox functional-
ity. The former now resided in Tektosyne.Core which was a superset of the present Java library.
Differences are noted in the enclosed ReadMe file. Version 5.6.5 in 2012 ended active devel-
opment of Tektosyne for .NET, with just one minor update for recent Visual Studio and .NET
Framework versions in 2015.

1.2.2 Moving to Java

Around 2012 it had become increasingly obvious that Microsoft was effectively abandoning
.NET as a rich client development platform, while Java had simultaneously recovered from its
takeover-induced hiatus and began rapidly making up lost ground in both language features
and Gut tooling (first JavaFX, later high pp1 support for AwT/Swing).

Running a variety of comparison tests and prototypes I noticed with some incredulity
that Java’s 64-bit Server vm quite dramatically outperformed .NET on Windows!, and that its
standard library was so much richer (e. g. the Java Collections Framework) that I could simply
drop many of the helpers I had written for .NET.

So I decided to switch my open-source activity from .NET to Java, including successive
porting of my existing projects. Tektosyne is the third completed port, after Star Chess (from
C rather than C#) and Class Diagrammer, and Tektosyne now in turn enables ports of Hexkit
and Myriarch. These will require a good deal more consideration, though: Hexkit in particular
will need some radical simplification. Time will tell.

1. If you cannot reproduce this on your Windows system you are most likely running the wrong Java vM,
thanks to Oracle’s stupid distribution policy prior to Java SE 9. See Java Client vM for details.

http://www.kynosarges.org/Hexkit.html
http://www.kynosarges.org/Myriarch.html
http://www.kynosarges.org/Projects.html
http://kynosarges.org/JavaClientVm.html

CHAPTER 2

Root Package

The root package org.kynosarges.tektosyne contains general mathematical utilities and two
specialized collections.

2.1 Mathematics

This section comprises mathematical utilities unrelated to computational geometry; see Chap-
ter 3 for the latter. Figure 2.1 shows the two classes described below.

Fortran — Static methods whose names and semantics mirror standard functions of For-
tran 90, with overloads for int, long, float, and double. All methods operating
on integral values throw ArithmeticException if an overflow occurs.

MathUtils — Static methods providing checked conversions, epsilon comparisons, prime num-
ber test, random element retrieval, and range restriction and normalization.

2.2 Collections

This section comprises two node-based collections that publicly expose their node structure
as read-only objects, allowing O(1) navigation and manipulation once a node has been ob-
tained. Both classes implement the appropriate interfaces of the Java Collections Framework.
Figure 2.2 shows the two collection and node classes.

NodeList<T> — Provides a generic linked list that is exactly equivalent to Javas LinkedList
but with publicly accessible nodes. The T values of nodes are directly settable,
unlike their structural properties.

NodeList.Node<T> — Provides a node in a NodeList<T>.

2. Root Package

QuadTree<V> — Provides a generic quadrant tree whose keys are org.kynosarges.tektosyne.
geometry.PointD locations, i. e. a two-dimensional search tree that recursively
divides a specified bounding rectangle into equal-sized quadrants. Finding
the quadrant that contains a given point and finding all points within a given
range are both logarithmic operations.

QuadTree.Node<V> — Provides a node in a QuadTree<V>.

The quad-tree implementation is based on Michael J. Laszlos Computational Geometry and
Computer Graphics in C++, Prentice Hall 1996. Additional features include a heuristic depth
probe to speed up searches in large trees, inspired by Sariel Har-Peled’s lecture Quadtrees - Hi-
erarchical Grids; and a move method that can reduce successive key changes to O(1) operations,
provided that old and new keys are clustered within the same leaf node.

10

2. Root Package

«final» «final»
Fortran MathUtils

+ aint(double): double + compare(double, double, double): int
+ aint(float): float + compare(float, float, float): int
+ anint(double): double + equals(double, double, double): boolean
+ anint(float): float + equals(float, float, float): boolean
+ ceiling(double): int + <T> getAny(Collection<T>): T
+ ceiling(float): int + <T> getAny(List<T>): T
+ floor(double): int + <T> getAny(T[): T
+ floor(float): int + isPrime(int): boolean
+ knint(double): long + normalize(double[]): double
+ knint(float): long + normalize(float[]): float
+ max(double...): double + restrict(double, double, double): double
+ max(float...): float + restrict(float, float, float): float
+ max(int...): int + restrict(int, int, int): int
+ max(long...): long + restrict(long, long, long): lon
+ min(double...): double + tolntExact(double): int
+ min(float...): float + tolntExact(float): int
+ min(int...): int + tolLongExact(double): long
+ min(long...): long + tolLongExact(float): long
+ modulo(double, double): double
+ modulo(float, float): float
+ modulo(int, int): int
+ modulo(long, long): lon
+ nint(double): int
+ nint(float): int
+ sum(double...): double
+ sum(float...): float
+ sum(int...):int
+ sum(long...):long

Figure 2.1: Utility Classes

11

2. Root Package

AbstractSequentialList<T>, Deque<T>
NodelList<T>

AbstractMap<PointD, V>
QuadTree<V>

B T i S o T S S S e e T T T T i i o T T S S e S S S S S T

NodelList()

NodelList(Collection<? extends T>)
add(T): boolean

add(int, T): void
addAfter(NodelList::Node<T>, T): void
addAll(int, Collection<? extends T>): boolean
addBefore(NodelList:Node<T>, T): void
addFirst(T): void

addLast(T): void

clear(): void

contains(Object): boolean
countNodes(): int
descendinglterator(): Iterator<T>
element(): T

findFirstNode(T): NodeList:Node<T>
findLastNode(T): NodeList::Node<T>
first(): NodeList:Node<T>

get(int): T

getFirst(): T

getLast(): T

getNode(int): NodeList::Node<T>
isEmpty(): boolean

last(): NodeList:Node<T>
listlterator(int): Listlterator<T>
offer(T): boolean

offerFirst(T): boolean

offerLast(T): boolean

peek(): T

peekFirst(): T

peekLast(): T

poll(): T

pollFirst(): T

pollLast(): T

pop(): T

push(T): void

remove(): T

remove(int): T
remove(NodelList:Node<T>): void
remove(Object): boolean
removeFirst(): T
removeFirstOccurrence(Object): boolean
removelast(): T
removelastOccurrence(Object): boolean
removeRange(int, int): void

set(int, T): T
*?

size(): int
«final, member, static»

Nodelist::Node<T>

+ next(): NodeList::Node<T>

+ owner(): NodeList<T>

+ previous(): NodeList::Node<T>
+ setValue(T): void

+ value(): T

+ 4+ o+

bounds: RectD { final }

capacity: int { final }

MAX_LEVEL: int=14{final}
PROBE_LEVEL: int=41{final}
rootNode: QuadTree:Node<V> { final }

I Tk T T T T T T S S S S S S A T

QuadTree(RectD)

QuadTree(RectD, int)

QuadTree(RectD, Map<PointD, V>)
containsKey(Object): boolean
containsKey(PointD, QuadTree:Node<V>): boolean
containsValue(Object): boolean

containsValue(V, QuadTree::Node<V>): boolean
copyTo(Map::Entry<PointD, V>[], int): void
entrySet(): Set<Map:Entry<PointD, V>>
findNode(PointD): QuadTree:Node<V>
findNode(int, int, int): QuadTree:Node<V>
findNodeByValue(V): QuadTree:Node<V>
findRange(RectD): Map<PointD, V>
findRange(PointD, double): Map<PointD, V>
get(Object): V

move(PointD, PointD, QuadTree::Node<V>): QuadTree:Node<V>
nodes(): Map<QuadTree:Node<V>>

put(Object, Object): Object { bridge }

put(PointD, V): V

putAll(Map<PointD, ? extends V>): void
remove(Object): V

remove(Object, Object): boolean

replace(Object, Object): Object { bridge }
replace(PointD, V): V

replace(Object, Object, Object): boolean { bridge }
replace(PointD, V, V): boolean
setProbeUseBitMask(boolean): void

*

«final, member, static»
QuadTree::Node<V>

+ bounds: RectD { final }

+ center: PointD { final }

+ parent: QuadTree:Node<V> { final }
+ signature: int { final }

+ entries(): Map<PointD, V>

+ gridX(): int

+ gridY():int

+ hasCapacity(): boolean

+ isLeaf(): boolean

level(): int

maxXmaxY(): QuadTree:Node<V>
maxXminY(): QuadTree::Node<V>
minXmaxY(): QuadTree:Node<V>
minXminY(): QuadTree:Node<V>
owner(): QuadTree<V>

L

+ 4+ + +

Figure 2.2: Collection Classes

12

CHAPTER 3

Geometry Package

Package org.kynosarges.tektosyne.geometry covers general computational geometry, includ-
ing a set of geometric primitives as well as a variety of standard algorithms and data struc-
tures. All types use two-dimensional coordinates exclusively. Many algorithms were adapted
from C/C++ and pseudocode programs in standard literature, including the following sources.
Please consult the Tektosyne Class Reference for details.

— Mark de Berg et al., Computational Geometry, Springer-Verlag 2008 (3rd ed.)

— Michael . Laszlo, Computational Geometry and Computer Graphics in C++, Prentice Hall
1996

— Joseph O’Rourke, Computational Geometry in C, Cambridge University Press 1988 (2nd
ed.)

The orientation of the vertical axis is somewhat problematic in computational geometry. The
standard mathematical orientation has y-coordinates increase upward, but the standard draw-
ing orientation of computer graphics puts the origin in the upper-left corner of the screen and
has y-coordinates increase downward. The Tektosyne Class Reference notes the actual orienta-
tion wherever it is relevant. Most algorithms assume mathematical orientation.

Precision. Another frequent source of trouble is floating-point imprecision. Some Tektosyne
algorithms use a fixed comparison epsilon of 17 to achieve numerical stability, while others
allow a user-defined epsilon. Some algorithms are available in both exact and epsilon variants.
You need to experiment with your own data to determine the most suitable variant.

When an algorithm accepts a user-defined epsilon, you can usually choose a fairly large
value that merges clearly distinct points rather than just compensating for floating-point im-
precision. One application is to map the location of a user’s mouse click on the screen to a
nearby point in a geometric data structure. The Tektosyne.Demo application offers several test
dialogs that let you experiment with super-sized comparison epsilons.

13

3. Geometry Package

3.1 Geometric Primitives

While both the traditional Java2D ap1 and more recently JavaFX define several geometric prim-
itives, none of them are ideal for computational geometry (and they are incompatible to boot).
So Tektosyne defines its own set of geometric primitives for two-dimensional coordinates, and
with the following common features:

— All classes are immutable with meaningful equals, hashCode, and toString overrides.
They can be declared value types once a future Java version introduces this concept.

— All classes are available in two coordinate types, int and double. The methods defined
on double classes are a superset of those defined on int classes.

— All classes provide conversions to their equivalent with the other coordinate type, as well
as to and from simple coordinate arrays with alternating dimensions.

— All calculations on int coordinates that might overflow either use an extended result type
or throw ArithmeticException on overflow.

Figure 3.1 shows primitives with int coordinates, and Figure 3.2 shows primitives with double
coordinates. The two ..Location classes apply equally to both coordinate types, but are shown
only in the first diagram to reduce clutter.

Instance methods on geometric primitives generally operate on the same type used to
represent coordinates, except for algorithms that produce fractional results or might overflow
int as mentioned above. The stand-alone algorithms described in the following sections always
expect double coordinates and operate with double precision.

PointD, PointI — Provides spatial locations and vectors with double or int coordinates.

LineD, LineI = — Provides directed line segments with double or int coordinates. Start and
end points are stored as PointD or PointI instances, respectively.

LineLocation = — Specifies the location of a PointD or PointI relative to a LineD or Linel,
respectively.
RectD, RectI — Provides rectangles with double or int coordinates. Smallest and greatest

coordinate pairs are stored as PointD or PointI instances, respectively.

RectlLocation — Specifies the location of a PointD or PointI relative to a RectD or RectlI,
respectively. Each dimension is stored as a LineLocation value.

SizeD, SizeI = — Provides spatial extensions with double or int coordinates. Checks for
non-negative extensions, otherwise a subset of PointD or PointI, resp.

14

3. Geometry Package

«final» «final» «final»
Linel Pointl Rectl
+ EMPTY: Linel { final } + EMPTY: Pointl { final } + EMPTY: Rectl{ final }
+ end: Pointl { final } + x:int{final} + max: Pointl { final }
+ start: Pointl { final } + y:int{final } + min: Pointl { final }
+ Linel() + Pointl() + Rectl()
+ Linel(Pointl, Pointl) + Pointl(int, int) + Rectl(Pointl, Pointl)
+ Linel(int, int, int, int) + add(Pointl): Pointl + Rectl(int, int, int, int)
+ angle(): double + angle(): double + circumscribe(Pointl...): Rectl
+ distanceSquared(Pointl): double + angleBetween(Pointl): double + contains(Pointl): boolean
+ equals(Object): boolean + angleBetween(Pointl, Pointl): double + contains(Rectl): boolean
+ findX(double): double + crossProductLength(Pointl): long @ contains(int, int): boolean
+ findY(double): double + crossProductLength(Pointl, Pointl): long + containsOpen(Pointl): boolean
+ fromints(int...): Linel + equals(Object): boolean + containsOpen(int, int): boolean
+ hashCode(): int + fromints(int...): Pointl + distanceVector(Pointl): Pointl
+ intersect(Linel): Linelntersection + fromPolar(double, double): Pointl + equals(Object): boolean
+ intersect(Pointl): PointD + hashCode(): int + fromints(int...): Rectl
+ inverseSlope(): double + isCollinear(Pointl, Pointl): boolean + hashCode(): int
+ length(): double + length(): double + height(): long
+ lengthSquared(): long + lengthSquared(): long + intersect(Rectl): Rectl
+ locate(Pointl): LineLocation + multiply(Pointl): long + intersectsWith(Rectl): boolean
+ locateCollinear(Pointl): LineLocation + restrict(int, int, int, int): Pointl + locate(Pointl): RectLocation
+ reverse(): Linel + subtract(Pointl): Pointl + offset(Pointl): Rectl
+ slope(): double + tolnts(Pointl...): int + offset(int, int): Rectl
+ tolnts(Linel...): int + toPointD(): PointD + tolnts(Rectl...): int
+ toLineD(): LineD + toString(): String + toRectD(): RectD
+ toString(): String + toString(): String
+ vector(): Pointl + union(Rectl): Rectl
+ width(): long
«ﬁnal»
Sizel
+ EMPTY: Sizel { final }
locate + height:int {final }
+ width: int { final }
locate
+ Sizel()
+ Sizel(int, int)
+ add(Sizel): Sizel
+ equals(Object): boolean
«enumeration» + fromints(int...): Sizelll
: 3 + hashCode(): int
LinaEaeSiiy + isEmpty(): boolean «final»
+ restrict(int, int, int, int): Sizel RectLocation
o %(E)':{E + subtract(Sizel): Sizel
: BETWEEN + tolnts(Sizel..):intl] Slz.el.... - int + edgeX: LineLocation { final }
+END i tOS'Z?D()' S'Z‘?D + edgeY: LineLocation { final }
e + toString(): String
+ LEFT
+ RIGHT + RectlLocation(LineLocation, LineLocation)
+ START + equals(Object): boolean
+ hashCode(): int
+ contains(LineLocation): boolean + toString(): String

Figure 3.1: Integer-Typed Primitives

A large number of basic operations such as addition, subtraction, angle and vector calculations
etc. are defined as instance methods on geometric primitives. More complex algorithms are
generally available through separate classes, described in the following sections. Some note-
worthy exceptions are listed below.

15

3. Geometry Package

«final» «final» «final»
LineD PointD RectD
+ EMPTY: LineD {final } + EMPTY: PointD { final } + EMPTY: RectD { final }
+ end: PointD { final } + x:double { final } + max: PointD { final }
+ start: PointD {final } + y:double {final } + min: PointD { final }
+ LineD() + PointD() + RectD()
+ LineD(PointD, PointD) + PointD(double, double) + RectD(PointD, PointD)
+ LineD(double, double, double, double) + add(PointD): PointD + RectD(double, double, double, double)
+ angle(): double + angle(): double + center(): PointD
+ distanceSquared(PointD): double + angleBetween(PointD): double + circumscribe(): Rectl
+ equals(Object): boolean + angleBetween(PointD, PointD): double + circumscribe(PointD...): RectD
+ equals(LineD, LineD, double): boolean + crossProductLength(PointD): double + contains(PointD): boolean
+ findX(double): double + crossProductLength(PointD, PointD): double + contains(RectD): boolean
+ findY(double): double + equals(Object): boolean + contains(double, double): boolean
+ fromDoubles(double...): LineD| ‘_2 + equals(PointD, PointD, double): boolean 2_’ + containsOpen(PointD): boolean
+ fromIndexPoints(PointDI[], Pointl[]): LineD| + fromDoubles(double...): PointD + containsOpen(double, double): boolean
+ hashCode(): int + fromPolar(double, double): PointD + distanceVector(PointD): PointD
+ intersect(LineD): Linelntersection + hashCode(): int + equals(Object): boolean
+ intersect(PointD): PointD + isCollinear(PointD, PointD): boolean + equals(RectD, RectD, double): boolean
+ intersect(LineD, double): Linelntersection + isCollinear(PointD, PointD, double): boolean + fromDoubles(double...): RectD
+ inverseSlope(): double + length(): double + hashCode(): int
+ length(): double + lengthSquared(): double + height(): double
+ lengthSquared(): double + move(PointD, double): PointD + intersect(LineD): LineD
+ locate(PointD): LineLocation + multiply(PointD): double + intersect(PointDI[]): PointD[]
+ locate(PointD, double): LineLocation + normalize(): PointD + intersect(RectD): RectD
+ locateCollinear(PointD): LineLocation + restrict(double, double, double, double): PointD + intersectsWith(LineD): boolean
+ locateCollinear(PointD, double): LineLocation + round(): Pointl + intersectsWith(RectD): boolean
+ reverse(): LineD + subtract(PointD): PointD + locate(PointD): RectLocation
+ round(): Linel + toDoubles(PointD...): double| + locate(PointD, double): RectLocation
+ slope(): double + toPointl(): Pointl + offset(PointD): RectD
+ toDoubles(LineD...): double| + toString(): String + offset(double, double): RectD
+ toLinel(): Linel + round(): Rectl
+ toString(): String + toDoubles(RectD...): double|
+ vector(): PointD + toRectl(): Rectl
«final» + toString(): String
. + union(RectD): RectD
Siz28 + width(: double
+ EMPTY: SizeD {final }
+ height: double {final }
+ width: double {final }
+ SizeD()
+ SizeD(double, double)
+ add(SizeD): SizeD
+ equals(Object): boolean
+ equals(SizeD, SizeD, double): boolean
+ fromDoubles(double...): SizeD
+ hashCode(): int
+ isEmpty(): boolean
+ restrict(double, double, double, double): SizeD
+ round(): Sizel
+ subtract(SizeD): SizeD
+ toDoubles(SizeD...): doublel
+ toSizel(): Sizel
+ toString(): String
Figure 3.2: Double-Typed Primitives
LineD/I.locate/Collinear — Finds the location of a point relative to the line segment.
RectD/I.locate — Finds the location of a point relative to the rectangle’s edges.
RectD.intersect(LineD) — Performs the Liang-Barsky line clipping algorithm to intersect

the rectangle with a line segment.

RectD.intersect(PointD[]) — Performs the Sutherland-Hodgman polygon clipping algorithm

16

3. Geometry Package

to intersect the rectangle with an arbitrary polygon.

3.2 Basic Algorithms

This section comprises basic constants and algorithms for computational geometry not covered
in other sections. Figure 3.3 shows an overview.

«final» «enumeration»
Angle Compass
+ DEGREES_TO_RADIANS: double = 0.017453292519943295 { final } + EAST
RADIANS_TO_DEGREES: d le =57.29577951 232 {final + NORTH
+ NORTH_EAST
+ degreesToCompass(double): Compass + NORTH_WEST
+ distanceDegrees(double, double): double + SOUTH
+ distanceRadians(double, double): double + SOUTH_EAST
+ normalizeDegrees(double): double + SOUTH WEST
+ normalizeRadians(double): double + WEST
+ normalizeRoundedDegrees(double): int
+ degrees(): int
+ fromDegrees(int): Compass
«final»
GeoUtils
+ connectPoints(boolean, PointD...): LineD
+ convexHull(PointD...): PointD
+ <T> fromDoubles(Class<T> | il
+ <T> fromlInts(Class<T>, int...): T «enumeration»
+ nearestPoint(List<PointD>, PointD): in .
+ pointinPolygon(PointD, PointD[]): PolygonLocation PolygonLocatign
+ pointlnPolygon(PointD, Poin le): PolygonLocation pointinPolygon
+ polygonArea(PointD...): double + EDGE
+ polygonCentroid(PointD...): PointD + INSIDE
+ randomLine(double, double, double, double): LineD + OUTSIDE
+ randomPoint(RectD): PointD + VERTEX
+ randomPoint(double, double, double, double): PointD
+ randomPoints(int, RectD): PointD
+ randomPoints(int, RectD, PointDComparator, double): PointD
+ randomPolygon(double, double, doubl le): PointD
+ randomRect(double, double, double, double): RectD
+ <T>toDoubles(Class<T>,T...): double
+ <T> toInts(Class<T>, T...): int
Figure 3.3: Basic Geometry Classes
Angle — Constants and methods to convert, normalize, and compare angles.

17

3. Geometry Package

Compass — Specifies the eight major compass directions as angles in degrees, starting
with zero degrees for north and continuing clockwise.

GeoUtils — Static utility methods and general algorithms, as described below.

PolygonLocation — Specifies thelocation of a point relative to a polygon: strictly inside, strictly
outside, or coinciding with an edge or a vertex.

GeoUtils contains a large number of disparate methods, so we list them separately.

connectPoints — Creates line segments that connect a given point sequence.
convexHull — Performs a Graham scan to compute the convex hull of a given point set.
from../to.. — Generic dispatchers for the array conversion methods defined on all geo-

metric primitives.

nearestPoint — Linear search for the element in a given point set with the smallest Eu-
clidean distance to a query point.

pointInPolygon — Performs a ray crossing algorithm to find the PolygonLocation of a query
point relative to a given arbitrary polygon.

polygon.. — Computes the area or centroid of a given arbitrary polygon.

randon... — Randomly creates line segments, points, rectangles, or simple polygons.

3.3 Line Intersection

Several algorithms intersect two or more line segments, represented either by LineD instances or
pairs of PointD coordinates. Figure 3.4 shows the defining classes. LineD and LineI also define
instance methods that forward to the two-segment algorithm.

LineIntersection — Defines a robust algorithm for finding the intersection, if any, between
two line segments or their infinite extensions, and also holds the result.

The algorithm examines both the cross-product lengths for each triplet
of end points and the line equation parameters for both segments to deter-
mine intermediate results. If these contradict each other, the algorithm starts
over with a greater comparison epsilon until both tests agree. The minimum
comparison epsilon is always 17" to avoid such recursions in most cases.

LineRelation — Specifies the relationship between two line segments: parallel, collinear, or
divergent.

18

3. Geometry Package

«final» «final»
Linelntersection MultiLinelntersection
+ first: LineLocation { final } + find(LineD[]): MultiLinePoint
+ relation: LineRelation { final } + findSimple(LineD[]): MultiLinePoint
+ second: LineLocation { final } + findSimple(LineDI[], double): MultiLinePoint:
+ shared: PointD { final } + split(LineD[], MultiLinePoint[]): Lin
+ equals(Object): boolean
+ exists(): boolean
+ existsBetween(): boolean
+ find(PointD, PointD, PointD, PointD): Linelntersection
+ find(PointD, PointD, PointD, PointD, double): Linelntersection
+ hashCode(): int «finab»
+ locateCollinear(PointD, PointD, PointD): LineLocation MultiLinePoint
+ locateCollinear(PointD, PointD, PointD, double): LineLocation
+ startOrEnd(LineD, LineD): PointD + lines: MultiLinePoint:Line[] { final }
+ toString(): String + shared: PointD { final }
? ? + equals(Object): boolean
first/second relation i hash.Code(): ",“
+ toString(): String
2

«enumeration» «enumeration»

LineLocation LineRelation .
+ AFTER + COLLINEAR «ﬁnal, member, static»
+ BEFORE + DIVERGENT MultiLinePoint::Line
+ BETWEEN + PARALLEL
+ END + index:int { final }
+ LEFT + location: LineLocation { final }
+ RIGHT
+ START + equals(Object): boolean

.) + hashCode(): int

+ contains(Linelocation): boolean + toString(): String

Figure 3.4: Line Intersection Classes

MultilLineIntersection — Defines both a brute-force and a sweep line algorithm for finding
all points of intersection between multiple line segments. The brute-force
algorithm simply intersects all input lines with each other. This is always an
O(n?) operation but has virtually no overhead and can accept a comparison
epsilon greater than 17" to merge nearby crossings.

The Bentley-Ottmann sweep line algorithm is faster for large input sets
with few intersections, but otherwise slower due to its large overhead. An
improved sweep line comparer raises numerical stability to the level of the
brute-force algorithm.

19

3. Geometry Package

MultilinePoint — Contains the result of either MultilLineIntersection algorithm.

MultiLinePoint.Line — Represents one of the line segments intersecting at the shared coor-
dinates stored in a MultilLinePoint.

3.4 Point Comparison

Two Comparator<PointD> implementations compare points lexicographically, preferring either
x- or y-coordinate. Comparisons can be performed exactly or with a supplied epsilon. That
and related search algorithms are defined in an abstract base class, see Figure 3.5.

PointDComparator — Comparestwo pointslexicographically. The comparison order depends
on the concrete instance.

PointDComparatorX — Compares two points lexicographically, preferring x-coordinates.
PointDComparatorY — Compares two points lexicographically, preferring y-coordinates.

The two concrete classes define the actual comparison methods, both as instance and static ver-
sions, for clients to call as is most convenient. The more interesting algorithms are defined on

the abstract base class. They work for either sorting order thanks to overridden getPrimary/Secondary
methods.

findNearest(List) — Performs a nearest-point search in a lexicographically sorted list. The
algorithm first performs a binary search in the preferred dimension to ap-
proximate the query point, and then expands a radius around that index un-
til the nearest point is found. This heuristic can achieve a runtime of O(1d
n) with no additional overhead, assuming that coordinates are more or less
evenly distributed throughout the collection.

findNearest(NavigableSet) — Equivalent to the List overload but uses headSet and tailSet
to initially approximate the query point, and then expands the search radius
with bidirectional iterators. The actual performance accordingly depends on
the implementation of NavigableSet.

findRange — Finds all points in a NavigableMap/Set that fall within a given rectangular
search range. The algorithm first uses subMap/Set to extract all points with
matching primary coordinates, and then checks each point’s secondary coor-
dinate against the search range. Runtime can approach O(ld ») if few points
are found but again depends on the collection’s implementation.

getPrimary — Gets the primary coordinate: x for PointDComparatorX, else y.

getSecondary — Gets the secondary coordinate: y for PointDComparatorX, else x.

20

3. Geometry Package

Comparator<PointD>, Serializable
PointDComparator

+ epsilon: double { final }

+ PointDComparator()

+ PointDComparator(double)

+ findNearest(List<PointD>, PointD): int

+ findNearest(NavigableSet<PointD>, PointD): PointD

+ <V> findRange(NavigableMap<PointD, V>, RectD): NavigableMap<PointD, V>
+ findRange(NavigableSet<PointD>, RectD): NavigableSet<PointD>

getPrimary(PointD): double

getSecondary(PointD): double

1
[[
| |
| |
PointDComparator PointDComparator
«final» «final»
PointDComparatorX PointDComparatorY
+ PointDComparatorX() + PointDComparatorY()
+ PointDComparatorX(double) + PointDComparatorY(double)
+ compare(Object, Object): int { bridge } + compare(Object, Object): int { bridge }
+ compare(PointD, PointD): int + compare(PointD, PointD): int
+ compareEpsilon(PointD, PointD): int + compareEpsilon(PointD, PointD): int
+ compareEpsilon(PointD, PointD, double): int + compareEpsilon(PointD, PointD, double): int
+ compareExact(PointD, PointD): int + compareExact(PointD, PointD): int
getPrimary(PointD): double # getPrimary(PointD): double
getSecondary(PointD): double # getSecondary(PointD): double

Figure 3.5: Point Comparison Classes

3.5 Regular Polygons

The classes shown in Figure 3.6 provide a flexible and efficient representation of regular polygon
grids. The customizable maps of the HexKkit Strategy Game System are based on the .NET version
of these types, and the Hexkit User’s Guide describes them in greater detail. The Tektosyne.Demo
application also provides a dialog to save and print arbitrary polygon grids.

PolygonGrid — Provides a rectangular grid of regular polygons with two-dimensional index-

21

http://www.kynosarges.org/Hexkit.html

3. Geometry Package

Graph<Pointl>
PolygonGrid

RegularPolygon

+ INVALID_LOCATION: Pointl { final }
+ isReadOnly: boolean { final }

+ PolygonGrid(PolygonGrid)

+ PolygonGrid(RegularPolygon)

+ PolygonGrid(RegularPolygon, PolygonGridShift)
areCompatible(RegularPolygon, PolygonGridShift): boolean
asReadOnly(): PolygonGrid
centerDistance(): SizeD

connectivity(): int

contains(Object): boolean { bridge }
contains(Pointl): boolean

contains(Rectl): boolean

contains(int, int): boolean

<T> createArray(Class<T>): T[I[]
edgeNeighborOffsets(): Pointl[][]

element(): RegularPolygon { final }
findNearestNode(PointD): Object { bridge }
findNearestNode(PointD): Pointl
getDistance(Object, Object): double { bridge }
getDistance(Pointl, Pointl): double
getEdgeNeighborOffsets(Pointl): PointlI[]
getElementBounds(Pointl): RectD
getElementBounds(Rectl): RectD
getElementBounds(int, int): RectD
getElementVertices(int, int): PointD[]
getNeighbor(Pointl, int): Pointl
getNeighborlndex(Pointl, Pointl): int
getNeighborOffsets(Pointl): Pointl[]
getNeighbors(Object): Collection { bridge }
getNeighbors(Pointl): List<Pointl>
getNeighbors(Object, int): Collection { bridge }
getNeighbors(Pointl, int): List<Pointl>
getStepDistance(Pointl, Pointl): int
getWorldLocation(Object): PointD { bridge }
getWorldLocation(Pointl): PointD
getWorldRegion(Object): PointD[] { bridge }
getWorldRegion(Pointl): PointDI[]
gridShift(): PolygonGridShift { final }
gridToWorld(Pointl): PointD
gridToWorld(int, int): PointD

isValid(Pointl): boolean

isValid(int, int): boolean

neighborOffsets(): PointI[I[]

nodeCount(): int

nodes(): Collection { bridge }

nodes(): List<Pointl>
setElement(RegularPolygon): void { final }
setGridShift(PolygonGridShift): void { final }
setSize(Sizel): void { final }

size(): Sizel { final }

worldBounds(): RectD

worldToGrid(PointD): Pointl
worldToGrid(double, double): Pointl
worldToGridClipped(PointD): Pointl
worldToGridClipped(double, double): Pointl

+ +

B O T T i S S S S S S S T T T T T T T T i i S S e S S S S I

element

+ bounds: RectD { final }

+ connectivity: int { final }

+ hasTopIndex: boolean {final }
innerRadius: double { final }

length: double { final }

orientation: PolygonOrientation { final }
outerRadius: double { final }

sides: int { final }

vertexNeighbors: boolean {final }
vertices: PointD[] { final }

+ + + + + + +

Lo-cement |

RegularPolygon(double, int, PolygonOrientation)
RegularPolygon(double, int, PolygonOrientation, boolean)
angleTolndex(double): int

circumscribe(double): RegularPolygon
circumscribe(double, double): RegularPolygon
compassTolndex(Compass): int
indexToAngle(int): double

indexToCompass(int): Compass

inflate(double): RegularPolygon
inscribe(double): RegularPolygon
inscribe(double, double): RegularPolygon
opposinglndex(int): int

resize(double): RegularPolygon

+ 4+ A+t

Y

orientation ;
«enumeration»

PolygonGridShift

PolygonOrientation +

«enumeration» + COLUMN DOWN

COLUMN_UP
NONE

+ ON_EDGE
+ ON_VERTEX

ROW_LEFT
ROW RIGHT

+ + +

anyColumns(): boolean
anyRows(): boolean

gridshift isDownColumn(int): boolean

ctor

isLeftRow(int): boolean
isRightRow(int): boolean
isUpColumn(int): boolean

+ 4+ o+ o+ o+ o+

SubdivisionMap<Pointl>
«final»

PolygonGridMap

+ PolygonGridMap(PolygonGrid, PointD, double)
+ fromFace(SubdivisionFace): Object { bridge }

+ fromFace(SubdivisionFace): Pointl

+ source(): Subdivision

+ target(): Object { bridge }

+ target(): PolygonGrid

+ toFace(Object): SubdivisionFace { bridge }

+ toFace(Pointl): SubdivisionFace

Figure 3.6: Regular Polygon Classes

22

3. Geometry Package

ing. Features include efficient distance calculations, conversions between grid
and world coordinates, a read-only wrapper, and pathfinding between grid lo-
cations using Graph algorithms (see Chapter 4).

PolygonGridMap — Maps the elements of a PolygonGrid to the faces of an equivalent Subdivision
(see Chapter 5). This conversion is intended for further modification or test-
ing, as PolygonGrid itself is far more efficient than Subdivision.

PolygonGridShift — Specifies the shifting of rows or columns in a PolygonGrid, i. e. whether
the second row or column is shifted right or down compared to the first one.

RegularPolygon — Provides a regular polygon with three or more sides. A RegularPolygon
with four or six sides can be used to construct a PolygonGrid.

PolygonOrientation — Specifies the orientation of a RegularPolygon: lying on an edge or stand-
ing on a vertex.

3.6 Voronoi Diagrams

The classes shown in Figure 3.7 construct two standard structures from a given set of generator
sites: the Voronoi diagram, whose polygonal regions comprise all points that are nearest to
each generator site; and the Delaunay triangulation, its dual graph, whose edges are the nearest-
neighbor connections for all generator sites.

Voronoi — Defines a sweep line algorithm to find the Delaunay triangulation and op-
tionally also the Voronoi diagram for a given point set, with a runtime of
O(n log n). The Java implementation is based on the original C program
by Steven J. Fortune.

VoronoiEdge = — Represents one edge in a Voronoi diagram stored in VoronoiResults. This
includes the diagram vertices that terminate the edge and the generator
sites that are bisected by the edge.

VoronoiResults — Contains the results of the Voronoi algorithm. Optionally creates a planar
Subdivision (see Chapter 5) based on the Delaunay triangulation. This
subdivision may be clipped to an arbitrary rectangle, and its vertices may
be mapped to polygons representing the Voronoi regions.

VoronoiMap — Maps the Voronoi regions and generator sites stored in VoronoiResults to
the faces of an equivalent Subdivision. Note that pathfinding between gen-
erator sites requires the Delaunay subdivision (see above), as the pathfind-
ing algorithms defined on Graph (see Chapter 4) operate only on the edges
of a planar subdivision.

23

3. Geometry Package

«final»
Voronoi

+ findAll(PointD[]): VoronoiResults

+ findAll(PointD[], RectD): VoronoiResults

+ findDelaunay(PointD[]): Pointl

+ findDelaunaySubdivision(PointD[]): Subdivision

findAll

Vi

«final»
VoronoiResults «final»

clippingBounds: RectD { final } VorcREtEes

generatorSites: PointD[] { final }
voronoiEdges: VoronoiEdge[] { final }
voronoiEdges

voronoiVertices: PointD[] { final } l®

*

sitel:int { final }
site2: int { final }
vertex1:int { final }
vertex2: int { final }

+ + + +

+ + + +

+ clearVoronoiRegions(): void

+ clipDelaunayEdges(RectD): LineD[]

+ delaunayEdges(): LineDI[]

+ toDelaunaySubdivision(boolean): Subdivision

+ toDelaunaySubdivision(RectD, boolean): Subdivision
+ voronoiRegions(): PointD[][]

T

ctor

SubdivisionMap<Integer>

+

equals(Object): boolean
hashCode(): int
toString(): String

+ +

VoronoiMap «interface»

G- <T>
+ VoronoiMap(VoronoiResults) SubdivisionMap<i

+ fromFace(SubdivisionFace): Integer - ——
+ fromFace(SubdivisionFace): Object { bridge }
+ source(): Subdivision

+ target(): Object { bridge }

+ target(): VoronoiResults

+ toFace(int): SubdivisionFace

+ toFace(Integer): SubdivisionFace

+ toFace(Object): SubdivisionFace { bridge }

+ fromFace(SubdivisionFace): T { default }
+ source(): Subdivision

+ target(): Object

+ toFace(T): SubdivisionFace { default }

Figure 3.7: Voronoi Diagram Classes

Note. PolygonGridMap and VoronoiMap actually reside in package org.kynosarges.tektosyne.
subdivision but were included with their related classes in this chapter.

24

CHAPTER 4

Graph Package

Package org.kynosarges.tektosyne.graph provides generic graph interfaces and four search
algorithms that operate on them. Figure 4.1 shows all nine types in the package, as well as the
two predefined Tektosyne classes that implement the central Graph<T> interface.

Since the mechanisms implemented here are rather complex and not based on any well-
known standards, this chapter goes into greater detail than usual. To see the graph algorithms
in action, try the following:

— The Tektosyne.Demo application contains an interactive test that runs all four algorithms
on both PolygonGrid and Subdivision graphs.

— The Hexkit Strategy Game System utilizes a complex customizable implementation based
on the .NET version of PolygonGrid graphs. The Hexkit User’s Guide also describes the
interaction of the game system and the pathfinding mechanisms.

4.1 Graphs and Agents

The two basic interfaces that connect the four generic algorithms with custom applications are
Graph<T> and GraphAgent<T>. The first represents the graph itself on which searches take place,
and must always be implemented. The second represents some mobile agent that traverses the
graph, and is required for the AStar<T> and Coverage<T> algorithms.

4.1.1 Graph Structure

The central interface Graph<T> represents any graph whose T nodes map to polygonal regions in
two-dimensional space. All graph algorithms are created with an Graph<T> instance on which
all searches are performed.

Tektosyne contains two predefined implementations, PolygonGrid (see Section 3.5) and
Subdivision (see Chapter 5). The PolygonGrid node type is PointI: each graph node is the two-

25

http://www.kynosarges.org/Hexkit.html

4. Graph Package

«interface»
GraphPath<T>

+ getLastNode(double): T
+ nodes(): List<T>
+ totalCost(): double

agent

«nterface»
GraphAgent<T>

+ canMakeStep(T, T): boolean

+ canOccupy(T): boolean { default }

+ getStepCost(T, T): double

+ isNearTarget(T, T, double): boolean { default }
+ relaxedRange(): boolean

GraphPath<T> «final»
AStar<T> PathNode<T>
+ graph: Graph<T> { final } + node:T{final }
+ useWorldDistance: boolean ‘&
* | + children(): List<PathNode<T>>
+ AStar(Graph<T>) + f(): double
+ absoluteLimit(): double + g(): double
+ agent(): GraphAgent<T> + h(): double
+ bestNode(): PathNode<T> + parent(): PathNode<T>
+ findBestPath(GraphAgent<T>, T, T): boolean
+ getLastNode(double): T
+ getLastPathNode(double): PathNode<T>
+ nodes(): List<T>
+ relativeLimit(): double Graph<Pointl
+ setRelativeLimit(double): void "L om. 1
+ totalCost(): double o>— PolygonGrid
e |
Coverage<T> <|7

+ graph: Graph<T> { final }

«interface»

+ isObscured(NodeArc): int
+ start(): double

+ sweep(): double

+ visibleFraction(): double

+ Coverage(Graph<T>)

+ agent(): GraphAgent<T>

+ findReachable(GraphAgent<T>, T, double): boolean
+ nodes(): List<T>

Graph<T>

+ connectivity(): int
+ contains(T): boolean

FloodFill<T>

+ findNearestNode(PointD): T

+ getDistance(T, T): double

+ getNeighbors(T): Collection<T>

+ getNeighbors(T, int): Collection<T> { default }
+ getWorldLocation(T): PointD

+ graph: Graph<T> {final }

+ getWorldRegion(T): PointD[]
+ nodeCount(): int

+ FloodFill(Graph<T>)
+ findMatching(Predicate<T>, T): boolean
+ nodes(): List<T>

+ nodes(): Collection<T>

o——— T

Visibility<T>

O—

Graph<PointD>
Subdivision

+ graph: Graph<T> { final }

agent
«final»
NodeArc
+ distance: double { final } nodeArcs
e

+ Visibility(Graph<T>)

+ findVisible(Predicate<T>, T, double): boolean
+ nodeArcs(): Map<NodeArc>

+ nodes(): List<T>

+ setThreshold(double): void

+ threshold(): double

Figure 4.1: Graph Classes

dimensional index of a grid element. The Subdivision node type is PointD: each graph node is
the two-dimensional location of a subdivision vertex.
The following Graph<T> members establish the nodes and edges of a graph.

connectivity — The maximum number of immediate neighbors of any graph node. A node’s
immediate neighbors are the nodes that share an edge with that node, and
therefore can be reached within a single movement step.

contains

— Determines whether the graph contains a specified node.

getNeighbors — Finds allimmediate neighbors of a specified graph node, or all remoter neigh-
bors within a given range of movement steps.

26

4. Graph Package

nodeCount ~ — The total number of nodes in the graph.

nodes — Enumerates all nodes in the graph.

4.1.2 World Coordinates

Graph<T> represents a purely abstract system of node connections, but each graph node also
maps to coordinates and regions in two-dimensional space. We refer to these coordinates as
“world coordinates” to distinguish them from node coordinates in some graph-specific system,
e. g. the two-dimensional integer indices of PolygonGrid elements. In the case of Subdivision
graphs, the two systems are identical: graph coordinates equal world coordinates.

The following Graph<T> members establish relationships between graph nodes and world
coordinates (although this is not necessarily the case for getDistance).

findNearestNode — Finds the graph node nearest to the specified world coordinates.

getDistance — Computes the distance between two specified graph nodes in terms of
some arbitrary distance measure, which may or may not correspond to
world coordinates. Generally, an implementation should use the sim-
plest calculation that obeys two invariants. One is the step cost invariant
for the associated graph agent (see below). The other requires that the
sum of distances between all successive nodes within a sequence is never
less than the distance between any two nodes from the same sequence.
PolygonGrid counts intervening nodes, i. e. the minimum number of
movement steps between immediate neighbors when moving from the
source node to the target node. Subdivision calculates the Euclidean
distance in world coordinates.

getWorldLocation — Gets the world location of a specified graph node. PolygonGrid returns
the center of the polygonal element that represents the graph node. Subdivision
simply returns the input.

getWorldRegion — Gets the vertices, in world coordinates, of the polygonal region covered
by a graph node. PolygonGrid returns the vertices of the polygonal el-
ement that represents the graph node. Subdivision requires that users
manually assign regions to graph nodes, e. g. Voronoi regions if the sub-
division was created from the corresponding Delaunay triangulation.

4.1.3 Moving Agents

The interface GraphAgent<T> represents a moving “agent,” i. e. anything that can move from one
graph node to another. The AStar<T> and Coverage<T> algorithms require an instance of this
interface to determine valid movement steps, the cost of each step, and other data.

There is no default implementation for GraphAgent<T> as the behavior of moving agents
is specific to each individual application. See below for tips on implementing this interface.

27

4. Graph Package

canMakeStep — Determines whether the agent can move from one specified graph node to
another, which must be an immediate neighbor.

canOccupy — Determines whether the agent can permanently occupy the specified graph
node, i. e. whether the agent’s movement path can end on that node.

getStepCost — The cost for moving the agent from one specified graph node to another,
which must be an immediate neighbor. The step cost can never be less than
the getDistance result for the two nodes. Together with the invariant re-
garding distances within node sequences (see above), the step cost invariant
allows the AStar<T> algorithm to use getDistance to establish lower bounds
for possible path costs.

isNearTarget — Determines whether the specified node is close enough to the ultimate target
node that pathfinding can successfully terminate. canOccupy must succeed as
well.

For example, when moving units towards an attack target, reaching the
target itself is unnecessary and usually even impossible. Instead, isNearTarget
should succeed when the agent has reached a location from which it can at-
tack the target.

relaxedRange — Indicates whether the agent’s path cost limit is strict or relaxed. This option
affects the AStar<T> and Coverage<T> algorithms, as described below.

4.2 A* Pathfinding Algorithm

AStar<T> defines the well-known A* pathfinding algorithm. The core of the Java implementa-
tion is based on the article Basic A* Pathfinding Made Simple by James Matthews, published in
AI Game Programming Wisdom, Charles River Media 2002.

AStar<T> finds the cheapest path, in terms of the combined cost of all movement steps,
from one specified graph node to another. The path is constructed as a tree of PathNode<T>
objects which associate a graph node with the auxiliary data required by the algorithm.

Once pathfinding is complete, the final PathNode<T> of the cheapest path is stored in the
bestNode property, and the path itself can be backtracked as a sequence of parent links. This is
rather laborious, so the following properties expose the results in a more convenient way:

getLastNode — Finds the last node in the movement path whose path cost does not exceed
the specified maximum cost, and for which the agent’s canOccupy method suc-
ceeds. The last condition ensures that the result is valid as an intermediate stop
in multi-turn movements.

nodes — A list of all graph nodes in the movement path, from source to target.

totalCost — The total cost of the entire movement path returned in nodes.

28

4. Graph Package

These properties are also grouped into a separate interface, GraphPath<T>, which AStar<T> im-
plements. This interface was designed to represent graph paths without dependence on any
particular pathfinding algorithm, but A* is the only algorithm available so far.

In the rest of this section we’ll describe two options exposed by AStar<T» itself to cus-
tomize pathfinding, and how GraphAgent<T> interacts with the pathfinding algorithms.

4.2.1 Limited Search Range

Set AStar<T>.relativelimit to limit the search range during pathfinding. This may cause A* to
generate suboptimal paths or even fail to find any path at all, but performance on large graphs
will be greatly improved.

relativelimit defaults to zero. A positive value limits all candidate paths to an elliptical
area around the source and target node of the search. Any candidate nodes that would lead
beyond this area are ignored. All distances are calculated using the graph’s getDistance method.

relativelimit determines the radii of the ellipse, relative to the distance of the source
and target nodes. After a path search, the read-only property absoluteLimit holds the maxi-
mum number of movement steps that were considered for any candidate path.

4.2.2 Minimal World Distance

Set AStar<T>.uselorldDistance to eliminate zero-cost oscillations in the returned path. Such
oscillations have no effect on the total path cost, which is guaranteed to be optimal, but might
cause strangely “unnatural” unit movements.

This effect can occur on graphs such as PolygonGrid whose getDistance method does
not use world coordinates but some more abstract measure (in this case, the number of move-
ment steps) which may not assign the smallest path cost estimate to the visually most direct
path. The effect is pronounced on square grids with diagonal neighbor connections: rather
than moving in a direct line, an agent might “sidestep” to an adjacent row or column and then
back again.

useWorldDistance defaults to false. The value true adds an extra comparison to decide
between candidate nodes that have equal path costs. Rather than always selecting the first node
that happens to be generated, A* also checks the world distance of each candidate node to the
target location, and selects the node with the smallest distance.

4.2.3 Transient and Permanent Occupation

A* constructs movement paths from a sequence of individual movement steps between graph
nodes that are immediate neighbors. For each step, we must ask two questions: can the moving
agent make the step, and how much does it cost? The first question is answered by the two agent
methods canMakeStep and canOccupy, the second by getStepCost (described below).

We use two methods to determine whether a movement step is possible because we want
to distinguish between transient occupation and permanent occupation. canMakeStep performs

29

4. Graph Package

the fundamental test whether the agent can move between the specified nodes atall, i. e. whether
the source-target step can be even a transient part of its movement path. A target node for which
canMakeStep fails is never part of a path, unless we reach it by a different source node.

canOccupy represents an additional test whether the agent can end its movement path
on the specified node, and thus “permanently” occupy the node for the time being. A* requires
that canOccupy succeeds for the final path node, and also for any intermediate nodes returned
by getLastNode since they may represent intermediate stops during multi-turn movements.

This distinction between transient and permanent occupation is common in traditional
board games where pieces can jump over occupied squares but land only on free squares. War
games might also relax stacking limits for tiles that units only pass through.

Occupying Intermediate Nodes

A* never calls canOccupy on the intermediate nodes of a path, only on the final node. This is the
desired and necessary behavior. However, this can cause problems for multi-turn movements
with a non-trivial canOccupy implementation. Because canOccupy has not been checked for
intermediate nodes, getLastNode might return suboptimal nodes, or none at all, when invoked
with less than the total path cost.

For this reason, you must check every getLastNode call for a valid result, and even if
the result is valid your partial path might look rather strange. The best advice is to avoid im-
plementations where this is a major issue. The second-best advice is to use Coverage<T> and
heuristics to manually piece together valid movement paths through difficult environments.

4.2.4 Movement Step Costs

The total cost of a movement path found by AStar<T> and Coverage<T> is defined as the sum of
the costs of all movement steps between consecutive path nodes. Step costs depend only on the
moving agent and the two directly involved nodes, never on any other nodes in the same path.
This assumption is fundamental since the A* algorithm constructs an optimal path from path
fragments that were originally found as parts of different search paths.

The agent’s integer function getStepCost determines the cost of one movement step
from a specified graph node to one of its immediate neighbors. This cost must be positive and
no less than the graph’s getDistance result for all possible movement steps. canMakeStep (and
also canOccupy for the final node of a path) is always called before getStepCost to ensure that
the agent can enter the target node at all.

4.2.5 Relaxed Movement Range

The implementation of an agent’s relaxedRange method determines whether the moving agent
enjoys an extended movement range.

If relaxedRange is false, the maximum path cost supplied to A* limits the agent’s range
before a step is taken. If the cost of entering another location exceeds the remaining fraction

30

4. Graph Package

of the maximum cost, the agent cannot enter. Note that this might lead to situations where an
agent cannot move at all because all surrounding nodes exceed the maximum path cost.

If relaxedRange is true, a movement path ends only after its total cost equals or exceeds
the maximum path cost. Aslong as this has not happened, the agent can enter any neighboring
node, regardless of the actual cost of this step. This means that the agent can always make at
least one step in any direction, regardless of its cost.

Marking Nodes as Impassable

Assume you wish to prevent an agent from entering certain graph nodes, for example because
they represent impassable terrain.

If relaxedRange is false, you could return very high step costs for the desired nodes in
your getStepCost implementation. If the step costs exceed any maximum path cost supplied to
the pathfinding algorithms, the agent cannot enter these nodes.

However, this trick no longer works if relaxedRange is true. In this case, your canMake-
Step implementation must return false for the desired nodes to make them impassable.

4.3 Path Coverage Algorithm

Coverage<T> defines a path coverage algorithm whose results are compatible with AStar<T>.
This algorithm finds all graph nodes that can be reached from a specified node within a given
maximum path cost.

When running on the same Graph<T> and GraphAgent<T> instances, Coverage<T> pro-
duces exactly those target nodes for which A* would find a path, given the same or a lower
maximum cost. Coverage<T> does not store the actual paths, however — you must run AStar<T>
on any found target nodes for which you wish to obtain a movement path.

Coverage<T> uses the GraphAgent<T> interface in the same way as AStar<T>. Note that
since all graph nodes found by Coverage<T> represent end points of possible A* movement paths,
the agent’s canOccupy implementation must succeed for all of them. Intermediate nodes of pos-
sible paths that do not allow permanent occupation will not appear in the result set.

4.4 Flood Fill Algorithm

FloodFill<T> defines a flood fill algorithm for arbitrary graphs that works like the eponymous
function in paint programs. This algorithm finds all immediate neighbors of a specified graph
node for which a given predicate succeeds, then recursively all neighbors of those neighbors
and so on. The search ends when the graph is exhausted or the predicate fails for all remaining
neighbors of the result nodes.

FloodFill<T> is essentially a simpler version of Coverage<T> that uses a boolean pred-
icate instead of a full-fledged GraphAgent<T> instance. Therefore, its results are not necessarily
related to any valid agent movements.

31

4. Graph Package

4.5 Visibility Algorithm

Visibility<T> defines a line-of-sight algorithm that operates on a graph’s world coordinates.
The algorithm requires a source node and a maximum world distance from that source, as well
as a predicate that determines whether a specified graph node obstructs visibility.

Currently, occlusion is binary only — a given node is considered either completely opaque
or completely transparent. A node’s visibility is determined as follows:

1. The node is assigned a tangential arc, determined by drawing tangents from the location
of the source node (as per getWorldLocation) to the extreme vertices of its polygonal
world region (as per getWorldRegion).

2. The node is assigned a source distance, measured from the location of the source node to
the nearest vertex of its polygonal world region.

3. The node is compared against all opaque nodes that are not completely obscured by other
opaque nodes. If the node’s tangential arc overlaps that of an opaque node with a smaller
source distance, then the overlapping fraction is considered obscured.

4. The node is considered visible from the source exactly if a certain minimum fraction of
its tangential arc remains visible after comparing it against all opaque nodes.

This fraction defaults to 1/3 but can be changed to any value between zero and one by setting
threshold. Zero is equivalent to Double .MIN_NORMAL, i. e. a node is considered visible if even the
slightest bit of its tangential arc remains unobscured. Conversely, a threshold of one requires
that a visible node’s tangential arc is not obscured anywhere.

The computed data for all visited nodes - tangential arc, visible fraction, and source
distance - is available in the nodeArcs collection. Applications can use this information to fine-
tune their own concept of node visibility.

32

CHAPTER 5

Subdivision Package

Package org.kynosarges.tektosyne.subdivision contains classes that represent a planar sub-
division, i. e. any collection of line segments that intersect only at their end points, as a doubly-
connected edge list (DCEL). This representation is memory-intensive but allows fast navigation
through all elements of the subdivision.

Any planar graph with straight bounded edges can be represented as a Subdivision,
and so PolygonGrid and Voronoi (see Chapter 3) provide conversions to this class. A dedicated
interface maps the resulting Subdivision faces to elements of the original structure.

Subdivision — Provides a planar subdivision composed of straight bounded edges, vertices
on the end points of edges, and faces formed by closed loops of edges. Pathfind-
ing between vertices is supported by its Graph<T> implementation.

You can create a new Subdivision from a set of line segments or polygons,
or by intersecting two existing instances. You can also add or remove indi-
vidual edges, split edges in half, and move or delete individual vertices (along
with their edges). These operations allows interactive editing of a Subdivision.

SubdivisionEdge — Provides one half-edge in a Subdivision. Half-edges are always paired
with twin half-edges in the opposite direction to form one full edge of the
planar subdivision, connecting two of its vertices.

SubdivisionFace — Provides one face in a Subdivision. Faces are polygons that may or may
not enclose any area. Faces with a positive area may contain one or more
“holes,” i. e. interior faces. Every subdivision also contains one unbounded
face that represents the entire two-dimensional plane and thus encloses all
bounded faces as its “holes.”

SubdivisionSearch — Providesa fastbut memory-intensive search structure for a Subdivision.
The Subdivision class itself provides slower brute-force searches that require
no additional memory.

SubdivisionElement — Representsan arbitrary Subdivisionelement,i. e. one vertex, half-edge,

33

5. Subdivision Package

+ toLines(): LineD[]

+ toPolygons(): PointD[][]

+ validate(): void

+ vertexRegions(): Map<PointD[]>

+ vertices(): NavigableMap<SubdivisionEdge>

edges

SubdivisionSearch «final» «enumeration»
SubdivisionElement SubdivisionElementType
+ epsilon: double { final } type
+ source: Subdivision { final } find + content: Object { final } + EDGE
+ NULL FACE: SubdivisionElement { final } + FACE
+ SubdivisionSearch(Subdivision, boolean) + type: SubdivisionElementType { final } + VERTEX
+ find(PointD): SubdivisionElement
+ format(): String + SubdivisionElement(PointD)
+ validate(): void + SubdivisionElement(SubdivisionEdge)
+ SubdivisionElement(SubdivisionFace)
find + edge(): SubdivisionEdge
+ equals(Object): boolean
+ face(): SubdivisionFace
+ hashCode(): int
Graph<PointD> + isUnk_)ounded_Face(): boolean
. + toString(): String
Subdivision + vertex(): PointD
+ epsilon: double { final } Q \\k
+ Subdivision(double) face edge
+ addEdge(PointD, PointD): AddEdgeResult 0...1 | 0...1
+ connectivity(): int
+ contains(Object): boolean { bridge } «final» «final>
+ contains(PointD): boolean SubdivisionFace SubdivisionEdge
+ copy(): Subdivision
M edges():Na\l/lgabIeMap<Sub¢.i|Y|§|onEdge> + owner: Subdivision { final } + cycleArea(): double
+ faces(): NavigableMap<SubdivisionFace> + cycleCentroid(): PointD
+ find(PointD, double): SubdivisionElement faces + allCycleEdges(): List<SubdivisionEdge> + cycleEdges(): List<SubdivisionEdge>
+ findEdge(PointD, PointD): SubdivisionEdge % | + equals(Object): boolean + cyclePolygon(): PointD[]
+ findFace(PointD): SubdivisionFace + findNearestEdge(PointD): FindEdgeResult + destination(): PointD
+ findFace(PointD[], boolean): SubdivisionFace + hashCode(): int + equals(Object): boolean
+ findNearestEdge(PointD): FindEdgeResult + innerEdges(): List<SubdivisionEdge> + face(): SubdivisionFace
+ findNearestNode(PointD): Object { bridge } + key():int + findEdgeTo(PointD): SubdivisionEdge
+ findNearestNode(PointD): PointD + outerEdge(): SubdivisionEdge + findEdgeTo(PointD, double): SubdivisionEdge
+ findNearestVertex(PointD): PointD + toString(): String + hashCode(): int
+ fromLines(LineDI], double): Subdivision + isCycleAreaZero(): boolean
+ fromPolygons(PointD{[]. double): Subdivision /|\ + key(): int
+ getDistance(Object, Object): double { bridge } + locate(PointD): PolygonLocation
i g::gégg?;;gﬁ;?;g szglcji[\)/)i:si‘i?\lgzlge[] «interface» + locate(PointD, double): PolygonLocation
+ getNeighbors(Object): Collection { bridge } SubdivisionMap<T> i 2?:;205 :';ﬁ:\t’; ionEgs
+ getNeighbors(PointD): List<PointD> + originEdges(): List<SubdivisionEdge>
+ getWorldLocation(Object): PointD { bridge } O + fromFace(SubdivisionFace): T { default } + previous(): SubdivisionEdge
+ getWorldLocation(PointD): PointD + source(): Subdivision + toLine(): LineD
+ getWorldRegion(Object): PointD[] { bridge } + target(): Object + toLineReverse(): LineD
+ getWorldRegion(PointD): PointD[] + toFace(T): SubdivisionFace { default } + toString(): String
+ getZeroAreaCycles(): List<SubdivisionEdge> + twin(): SubdivisionEdge
+ intersection(Subdivision, Subdivision): SubdivisionIntersection LP
+ isEmpty(): boolean | *
+ moveVertex(PointD, PointD): boolean L
+ nodeCount(): int SubdivisionMap<T>
+ nodes(): Collection { bridge } «interface»
+ nodes(): Set<PointD> B0
+ removeEdge(int): RemoveEdgeResult SubdlwstonFuIIMap <7, U, v>
+ removeVertex(PointD): boolean A
+ renumberEdges(): boolean + fromEdge(SubldlwsmnEdge): U { default }
+ renumberFaces(): boolean + fromVertex(P0|nFI?){V {default}
+ splitEdge(int): SubdivisionEdge + toEdge(V): Sub.dlvmonEdge {default}
+ structureEquals(Subdivision): boolean + toVertex(V): PointD { default}

Figure 5.1: Subdivision Classes

or face. Returned by the general search algorithms Subdivision.find and
SubdivisionSearch.find.

SubdivisionElementType — Specifies the type of a concrete SubdivisionElement.

SubdivisionMap<T> — Provides a bidirectional mapping between the faces of a Subdivision
and the generically typed objects in some arbitrary collection.
Creating a Subdivision from another geometric structure automatically

34

5. Subdivision Package

establishes a structural mapping. Applications might also define semantic
mappings, e. g. correlating statistical information to faces that represent ge-
ographical areas.

SubdivisionFullMap<T,U,V> — ExtendsSubdivisionMap with application-specific mappings for
edges and vertices. All mapping methods have default interface implementa-
tions that throw UnsupportedOperationException when called without an im-
plementing class overriding them.

See Figure 5.1 for an overview. Package org.kynosarges.tektosyne.subdivision defines four
more public classes which are simple result containers for adding, finding, and removing edges,
and for subdivision intersections. These classes are not very interesting and have been elided
from the diagram for lack of space.

The overall implementation of Subdivision follows the DCEL structure outlined by Mark
de Berg et al., Computational Geometry, Springer-Verlag 2008 (3rd ed.), but a few particular
features are worth pointing out.

5.1 Edge and Face Keys

Every SubdivisionEdge and SubdivisionFace is identified by an integer key that is unique within
its Subdivision. The edges and faces collections provide an O(1d #) access by key.

The ascending sequence of keys reflects the order in which the Subdivision was con-
structed. Keys are normally immutable but can be renumbered to plug “holes” in the sequence
caused by dynamic edge deletion.

Strictly speaking, these keys are an unnecessary feature. References and/or indices
would suffice to identify half-edges and faces. However, keys so enormously simplify unit test-
ing and debugging that they are worth the extra memory.

5.2 Half-Edge Cycles

The half-edge cycle that contains a SubdivisionEdge constitutes a polygon which bounds the
incident SubdivisionFace and may have a positive area. Faces may have both an outer and
multiple inner boundaries, accessible through outertdge and innertdges respectively.

All half-edges in a cycle are linked by their previous and next pointers, but there also a
number of dedicated methods to obtain information about linked half-edges. Most are defined
on SubdivisionEdge itself.

cycleArea — Gets the area of the cycle polygon, which may be zero.
cycleCentroid — Gets the centroid of the cycle polygon, assuming its area is not zero.
cycleEdges — Gets a list of all half-edges in the cycle.

35

5. Subdivision Package

cyclePolygon — Gets all vertices of the cycle polygon.

isCycleAreaZero — Determines whether the area of the cycle polygon is zero, by examining
face pointers rather than actually computing the area. This is faster and
avoids rounding errors.

originEdges — Gets a list of all half-edges with the same origin. This list does not con-
stitute a cycle and is not normally interesting, but used internally when
adding or removing Subdivision edges or vertices.

SubdivisionFace.allCycleEdges — Gets a list of all half-edges in any cycle that form outer or
inner boundaries of the SubdivisionFace.

The three methods returning lists are convenient rather than efficient, due to the overhead of
creating a new List<T> on each call. Use explicit do-while loops over the linked half-edges for
maximum performance.

5.3 Vertex Distances

The overridden Graph<T> method getDistance (see Chapter 4) returns the actual Euclidean dis-
tance between vertices, including the final square root, rather than the less expensive squared
distance. This is necessary to avoid overestimating the total cost of compound paths within the
subdivision.

Assume a straight path consisting of multiple edges so that the total Euclidean distance
equals the sum of the lengths of all edges. If getDistance returned a squared Euclidean dis-
tance, the sum of all edge results would be smaller than the result for the two extreme vertices.
This violates the invariant that the sum of the distances between all successive nodes within a
sequence is never less than the distance between any two nodes from the same sequence.

5.4 Vertex Regions

The vertexRegions collection can associate vertices with user-defined polygonal regions. The
overridden Graph<T> method getWorldRegion returns elements from this collection. All col-
lection elements must be set explicitly, as the vertices of an arbitrary subdivision imply no
meaningful regions.

As a typical example, you might create the Subdivision from a Delaunay triangulation
and assign the Voronoi regions of its dual graph to the vertexRegions collection. This is what
VoronoiResults does (see Section 3.6).

36

CHAPTER 6

Benchmark Results

This chapter shows a selection of benchmark results obtained with the Tektosyne.Demo applica-
tion from the initial release of Tektosyne for Java, version 6.0.0. Many tests range over a variety
of input set sizes, but we mostly just cover the largest tested set except where comparison to a
smaller set was relevant.

The computer system was an Alienware Andromeda X51 R3 with one Intel Core i7
6700K cpu (4 GHz) and 16 GB rRaAM (dual-channel, 2133 MHz). The software environment
consisted of Windows 10 (64 bit), Java SE 8ul12, and .NET Framework 4.6.2.

The latter was used for comparison testing against the final release of Tektosyne for .NET,
version 5.6.3. Tests and algorithms were identical except where otherwise noted. All numbers
are averages of three consecutive benchmark runs.

Important! All Java tests used the 64-bit Server vm. This is unfortunately not the default on
Windows prior to Java SE 9 - see Java Client vM for details. Please do make sure to run the 64-
bit Server vm! Comparison testing with the 32-bit Client vM (the obsolete Windows default)
showed a general slowdown by a factor of two, making Java as slow or slower than .NET.

6.1 Point Collections

These tests cover the QuadTree collection described in Chapter 2 as compared to non-specialized
collections. For Java, that is PointDComparator.findRange on a standard TreeMap<PointD, V>.
The .NET version included a custom BraidedTree collection which I did not bring forward as
Java’s TreeMap proved equivalent in both functionality and performance.

37

http://kynosarges.org/JavaClientVm.html

6. Benchmark Results

Java .NET
TreeMap QuadTree | BraidedTree QuadTree
Add 14.18 9.41 23.98 11.55
Iterate 1.22 1.58 1.60 2.19
Search 12.23 5.77 15.33 5.80
Range 56.96 11.82 61.27 22.84
Remove 12.28 6.92 16.53 7.14

Times are microsecond averages for 60,000 random points. “Search” uses single query points.
“Range” performs 500 range searches over 0.56% of the total search space, 10, 0007,

6.2 Geometric Algorithms

These tests cover some basic geometric algorithms described in Chapter 3.

Java .NET
e=0 e=10]eg=0 =110

Line Intersection | 15.91 18.70 | 40.28 42.87
Point in Polygon | 20.14 28.73 | 24.24 26.44

Times are nanosecond averages for random objects, using both exact coordinate comparisons
and the indicated comparison epsilon. “Line Intersection” runs on random line pairs, “Point in
Polygon” runs on random polygons with 3-60 vertices.

The Java implementation of the line pair intersection algorithm was changed compared
to the .NET version, so the massively different run times are not directly comparable in this case.
See the ReadMe file for details.

Java | .NET
Convex Hull 6.83 | 11.39
Voronoi 49.57 | 78.29
Delaunay 42.10 | 68.63
Nearest Point (unsorted) | 43.01 | 59.85
Nearest Point (sorted) 0.71 | 0.88

Times are microsecond averages for sets of 120 random points, except for “Nearest Point”
which both use 12,000 random points. “Voronoi” runs Voronoi.findAll and “Delaunay” runs
Voronoi.findDelaunay. “Unsorted” runs GeoUtils.nearestPoint and “sorted” runs PointDComparator. -
findNearest, in each case on an ArraylList<PointD>.

38

6. Benchmark Results

6.3 Multi-Line Intersection

These tests cover both algorithms of the MultilLineIntersection class, see Section 3.3.

Java .NET

n=20 n=120|n=20 n=120
Sweep Line (0) 8.67 40.00 14.28 69.78
Sweep Line (n) 12.67 75.00 22.38 106.16
Sweep Line (n2/4) 57.00 3,046.33 84.33 5,188.67
Brute Force (0) 2.00 77.67 7.81 241.65
Brute Force (n) 4.33 96.67 12.35 258.66
Brute Force (n2/4) 19.00 1,003.00 2495 1,851.39

Times are microsecond averages for sets of n random lines. “Sweep Line” runs find and “Brute
Force” runs findSimple, using exact coordinate comparisons. The numbers in parentheses in-
dicate the number of intersections relative to the total line count. Brute force is always consid-
erably faster except when a large number of lines produce relatively few intersections.

6.4 Subdivision Algorithms

These tests cover planar subdivision intersections and searches, see Chapter 5.

Intersection Java .NET

0% - 100% | 143.33 255.30
10% - 90% | 329.58 569.31
50% - 50% | 675.83 | 1,017.35
90% - 10% | 430.42 604.35
100% - 0% | 227.92 327.13

Times are microsecond averages for calling Subdivision.intersection on two subdivisions
with a combined 240 edges, distributed between the first and second subdivision as indicated.

Intersecting two subdivisions with roughly the same edge count is much slower than
intersecting a sparse with a dense subdivision, or vice versa.

Subdivision Search Java .NET
Grid Lines | Grid Lines
Brute Force 12.53 25.31 | 13.72 29.84
Ordered Structure 541 020 794 0.36
Randomized Structure | 0.25 0.14 | 0.39 0.34

39

6. Benchmark Results

Times are microsecond averages for two different subdivisions: “Grid” is a PolygonGrid of
squares with 1860 strictly regular and ordered edges, “Lines” is a set of 1200 random line seg-
ments that do not intersect except at their end points.

“Brute Force” runs Subdivision.find. “Ordered Structure” runs SubdivisionSearch.
find on a search structure that was created directly from the edge sequence of the supplied
subdivision. “Randomized Structure” does the same but randomly shuffles the subdivision’s
edges before inserting them into the search structure.

While SubdivisionSearch is always much faster than a brute force search, it is very sen-
sitive to ordered edges and only achieves peak performance when they are randomized. Inter-
estingly, brute force prefers ordered edges but still lags far behind the search structure.

6.5 Comments on Java vs .NET

Java generally performed at least as good as .NET, and sometimes so much better that loop
counts had to be multiplied for similar execution times. Discounting the line pair intersection
case where the underlying implementation has changed, many tests show a speedup of 50-100%
and sometimes more.

This is especially remarkable as Java currently does not support custom value types, or
even numerical primitives as generic type arguments. Nevertheless Tektosyne’s geometric types
seem to perform better as Java classes than as .NET structs, and changing QuadTree’s internal
node collection to a hard-coded int hashtable produced negligible gains.

Consequently I refrained from using any hard-coded primitive collections in Tektosyne,
or other tricks to avoid classes and objects. Once value types and generics over primitives
(“Project Valhalla”) are available in some future Java version, I'll retest and see how much dif-
ference they will make in practice.

6.5.1 Caveats

The Windows .NET Framework on which I tested has slipped into maintenance mode as Mi-
crosoft now focuses its efforts on cross-platform .NET Core. This is a new design which also
includes a revised j1T compiler. Possibly Tektosyne for .NET would perform better there. I did
not try, and in any case it would require some refactoring as the old Tektosyne library had
numerous Windows .NET dependencies that are unavailable in .NET Core.

Second, the Java algorithms are equivalent but not perfectly identical to their .NET coun-
terparts. Some bugs were fixed, and some changes were required to accommodate differences
in language and standard library. However, with the notable exception of line pair intersection,
I don’t believe these changes could have caused the observed speedup - especially as I had spent
a lot of time optimizing the .NET version but not the Java port.

Lastly, using full-size objects instead of value types or primitive collections does have
the disadvantage of increased memory consumption and additional access indirections. For
very large amounts of data, this might cause the .NET version to outperform Java for now.

40

	Package Overview
	Design Goals
	Design History
	.NET Origins
	Moving to Java

	Root Package
	Mathematics
	Collections

	Geometry Package
	Geometric Primitives
	Basic Algorithms
	Line Intersection
	Point Comparison
	Regular Polygons
	Voronoi Diagrams

	Graph Package
	Graphs and Agents
	Graph Structure
	World Coordinates
	Moving Agents

	A* Pathfinding Algorithm
	Limited Search Range
	Minimal World Distance
	Transient and Permanent Occupation
	Movement Step Costs
	Relaxed Movement Range

	Path Coverage Algorithm
	Flood Fill Algorithm
	Visibility Algorithm

	Subdivision Package
	Edge and Face Keys
	Half-Edge Cycles
	Vertex Distances
	Vertex Regions

	Benchmark Results
	Point Collections
	Geometric Algorithms
	Multi-Line Intersection
	Subdivision Algorithms
	Comments on Java vs .NET
	Caveats

